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Abstract. The three art gallery problems Vertex Guard, Edge

Guard and Point Guard are known to be NP -hard [8]. Approximation
algorithms for Vertex Guard and Edge Guard with a logarithmic ra-
tio were proposed in [7]. We prove that for each of these problems, there
exists a constant ε > 0, such that no polynomial time algorithm can
guarantee an approximation ratio of 1 + ε unless P = NP . We obtain
our results by proposing gap-preserving reductions, based on reductions
from [8]. Our results are the first inapproximability results for these
problems.

1 Introduction and Problem Definition

Guarding polygons is a variant of the art gallery problem, which asks how many
guards are needed to see every point in the interior of a polygon P given as a
linked list of n points in the x−y-plane. Polygon guarding problems are classified
as to where the guards may be positioned, what kind of guards can be used,
whether only the boundary or all of the interior of the polygon should be seen
from at least one guard, and assumptions are also made on certain properties
of the input polygon. In this paper, we assume that the input polygons are
simple, i.e., such that no two nonconsecutive edges intersect. A point sees some
other point, if the line segment connecting the two points does not intersect the
exterior of the polygon P .

Many results are known concerning upper and lower bounds on the number of
guards needed. Comparatively few papers study the computational complexity of
art gallery problems. Surveys on the general topic of art galleries include [11,13],
and [14]. [9] contains an overview of what is known about the computational
complexity of several art gallery problems. As for the computational complexity
of art gallery problems, it is known that the problem of covering a polygon with
holes with a minimum number of convex polygons or star-shaped polygons is
NP -hard [10]. The latter problem is equivalent to the Point Guard problem to
be defined later. These problems remain NP -hard even if the input polygon has
no holes (for convex polygons [4] and for star-shaped polygons [8]). The two prob-
lems Vertex Guard and Edge Guard (to be defined later) are NP -hard for
polygons without holes [8]. Point Guard, Vertex Guard and Edge Guard
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for polygons with holes cannot be approximated by any polynomial algorithm
within a factor 1−ε

28 lnn for any ε > 0 unless NP ⊆ TIME(nO(log log n)) [6]. Fi-
nally, approximation algorithms for Vertex Guard and Edge Guard, which
achieve approximation ratios of O(log n), exist [7]. The approximation algorithms
work for polygons with and without holes.

We study the following problems:

– Vertex Guard(VG):
Given a polygon P (without holes) with n vertices, find a minimum subset S
of vertices such that every point on the boundary of the polygon P can be
seen from at least one vertex in S. We say that guards are placed at the
vertices in S. The vertices in S are called vertex guards.

– Edge Guard (EG):
Given a polygon P (without holes) with n vertices, find a minimum subset S
of edges, i.e. line segments of the polygon, such that every point on the
boundary of the polygon P can be seen from at least one point on an edge
in S. The edges in S are called edge-guards.

– Point Guard (PG):
Given a polygon P (without holes) with n vertices, find a minimum subset S
of points in the interior of the polygon such that every point on the boundary
of the polygon P can be seen from at least one point in S. The points in S
are called point-guards.

Note that our definitions differ from the corresponding definitions in [8] because
in [8] the guards must see all of the interior of the polygon rather than only the
boundary. It will be easy to see that our results carry over to these problems.

Since these problems are NP -hard, we would like to know how well they can
be approximated by polynomial time algorithms. Urrutia points out that such
results are needed [14]. When trying to determine the approximation properties
of a problem, we always have two options; one of them is to find approximation
algorithms that achieve a certain approximation ratio, as has been done for VG
and EG [7]. The other option is to find lower bounds on the approximation ratio
achievable, which is what we pursue in this paper. The result of this paper is that
VG, EG and PG for polygons without holes are APX-hard, which means that
for each of these problems, there is a constant ε > 0 such that an approximation
ratio of 1 + ε cannot be guaranteed by any polynomial time algorithm, unless
NP = P . (See [3] for an introduction to the class APX .)

We prove the results by describing a reduction from 5-Occurrence-3-Sat,
which is the version of 3-SAT with each clause containing at most three literals
and with each variable appearing in at most five literals. 5-Occurrence-3-Sat

is MAXSNP -complete [12], which means that there is a constant γ > 0 such
that no polynomial time algorithm can guarantee an approximation-ratio of 1+γ
for 5-Occurrence-3-Sat, unless NP = P [2]. Our reduction follows the lines
of the reductions in [8]. We show that our reduction is gap-preserving, using a
technique introduced in [2].

In Sect. 2, we propose a construction that takes a 5-Occurrence-3-Sat

instance as input and yields a polygon without holes, which is a PG-instance.
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Fig. 1. (a) Literal Pattern; (b) Variable Pattern

The transformation of the solution is described in Sect. 3. We analyze the reduc-
tion and obtain our main result in Sect. 4. Section 5 contains some concluding
remarks.

2 Construction of the Reduction

We present the construction for PG. Suppose we are given an instance I of 5-

Occurrence-3-Sat. Let I consist of n variables x1, · · · , xn and of m ≤ 5
3n

clauses c1, · · · , cm. We construct a polygon P that can be used in the reduction.
For every literal yj , which is either xj or ¬xj , we construct a “literal pat-

tern” as shown in Fig. 1(a). The literal pattern is the polygon defined by the
points l1, · · · , l6. The edge from l6 to l1 is not part of the final polygon, but serves
as an interface to the outside of the literal pattern. All other edges in the literal
pattern are part of the final polygon. The points l4, l5, l1 lie on a straight line.
Therefore, a guard at point l1 or point l5 sees all of the interior of the literal
pattern. The final construction is such that a guard at point l1 implies that the
literal is true and such that a guard at point l5 implies that the literal is false.
We, therefore, call point l1 simply T ; similarly, l5 is called F . For a finite number
of guards, in order to completely see the whole literal pattern of Fig. 1(a), at
least one guard must be inside the literal pattern. (If point l4 of the pattern can
be seen from a guard outside the pattern, which is possible by a guard on the
line through l4 and l1, then in order to see the points on the segment from l4
to l3 from outside the pattern, an infinite number of guards is needed.)

For every clause ci consisting of the literals yj , yk and yl, we construct a
“clause junction” as shown in Fig. 2. The clause junction is the polygon starting
at point p1 and moving along the solid line through p2, p3, p4, the three literal
patterns and ending at point p8. The line from p8 to p1 is not part of the final
polygon, but, again, serves as an interface of the clause junction to the outside.
At least three guards are needed to completely see the clause junction in Fig. 2:
one guard for each literal pattern. At least one of these three guards needs to be
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Fig. 3. Putting the pieces together

at point l1(= T ) of the corresponding literal pattern in order to see point p6 of
the clause junction.

For every variable xj , we construct a “variable pattern” as shown in Fig. 1(b).
The variable pattern is the polygon defined by points v1, · · · , v11. The edge
from v1 to v11 is not part of the final polygon, but serves as an interface. We call
the polygon defined by the points v1, v2, v3, v4 the right leg of the variable pattern
and the polygon defined by v5, v6, v7, v11 the left leg of the variable pattern. The
polygon formed by v8, v9, v10 is called the triangle of the variable pattern. The
points v9, v10, v1 lie on a straight line. Therefore, for a finite number of guards,
in order to completely see the triangle (formed by the three points v8, v9, v10),
at least one guard must be inside the variable pattern. In the final polygon, this
guard sits at point v1, if the variable is assigned the value true, and it sits at
point v5, if the variable is false.

We put all pieces together as shown in Fig. 3. A guard at point w1 sees all the
legs of the variable patterns. The points w3, w4, w1 are in a straight line. For a fi-
nite number of guards, in order to completely see the triangle w1, w2, w3, at least
one guard must lie inside the ear-like feature defined by the polygon w1, · · · , w6.
Finally, we construct for each literal yj in each clause two “spikes” as shown
in Fig. 4. Figure 4 (a) is for the case, when literal yj is equal to xj ; Fig-
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Fig. 4. (a): Spikes, when literal yj is equal to xj ; (b): Spikes, when literal yj is
equal to ¬xj

ure 4 (b) is for the case, when literal yj is equal to ¬xj . The points s2, s1

and l5(= F ) of the corresponding literal pattern are in a straight line, as are s3, s4

and l5. A spike is a polygon defined by points s1, s2, s3, s4. The corresponding
spike-cone is defined as the triangle s1, s4, l1 or s1, s4, l5. (Note that l1 = T
and l5 = F .) The points s2, s4, e1 are in a straight line as are points s3, v1, e2.
We call the polygon s3, v1, e2, e1 the extended spike-cone of the corresponding
spike (see Fig. 4 (b)). For a guard outside the variable pattern, in order to see
point s2 of a spike, it is a necessary condition that this guard lie in the cor-
responding extended spike-cone. We, therefore, call point s2 of each spike the
distinguished point of the spike. Note that the spikes may have to be very thin
(thinner than indicated in Fig. 4), since up to five spikes must fit into each leg
without intersecting each other.

In order to ensure that at no point between the variable and the literal
patterns a guard sees the distinguished points of three or more spikes that belong
to three different legs of variable patterns, we construct the polygon in such a
way that no three extended spike-cones of different legs of variable patterns
intersect. This restriction forces us to give a more detailed description of the
whole construction.

First, fix the points l1(= T ) and l5(= F ) of each literal pattern on a horizontal
line with constant distance between them. (We will move the F points above
the line at the end of the construction.) For each l1 and l5 we fix the point e1

at distance a to the left of the point l1 or l5. We also fix point e2 at distance 2a
to the right of the point l1 or l5 with a a constant as indicated in Fig. 5 (a).
The constant a has to be small enough, in order to avoid that the extended
spike-cones of two neighboring points l1 and l5 intersect at the horizontal line
of the literal patterns, and in order to avoid that spikes in the same leg of a
variable pattern intersect. Choose w1 at a constant distance to the left of the
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Fig. 5. Construction of the right leg

leftmost l5 (of the leftmost literal) and at a constant distance w′ below the line
of the literal patterns.

Assume that the variable patterns for the variables x1, · · · , xi−1 have already
been constructed. We show how to construct the next variable pattern for vari-
able xi. We determine point v1 of the variable pattern as follows: We determine
the rightmost point l5 or l1 of the at most five literal patterns that are literals of
variable xi, from which a spike must be constructed in the right leg of the vari-
able pattern. W. l. o. g. assume that this point is some point l1. We draw a line
from point e2 (with respect to l1) through the point S, which is the point with
largest y-value of all points where two extended spike-cones intersect. Let v′1 be
the point, where this line and the horizontal line of the variable patterns inter-
sect. Now, let v1 be at some constant distance to the left of v′1. We now construct
the right leg of the variable pattern as indicated in Fig. 5 (a), which shows the
right leg with the top-most spike. Figure 5 (b) shows how (a) is constructed.
We describe this step by step. Once point v1 has been determined, draw a line
segment from point e2 through v1 and stop at a certain, fixed x-distance from v1.
This yields point s3. Draw a line segment from l1 through v1 and stop at the
same x-distance from v1, which is point s2. Draw a line segment from s3 to l1.
Then, draw a line segment from s2 to e1. Point s4 is the intersection point of
these two line segments. Finally, draw the leg of the variable pattern by drawing
a line segment from w1 through v1 and a line segment from w1 through s4, which
yields point s1. We continue with the remaining spikes of the leg. The remaining
spikes are drawn with x-distances from points s4 to points s2 always the same.



Inapproximability Results for Guarding Polygons without Holes 433

e
2

v

d

le1 5

s

vv’ 1

4

5

5

Fig. 6. The left leg

We construct the left leg of the variable pattern accordingly, except for point v5.
It is shown in Fig. 6 how to obtain v5; v5 is the intersection point of a vertical line
at a constant distance d from v′5 with either the extended spike-cone borderline
from e2 through v′5 or with the line from v1 through point s4 (of the top-most
spike) of the first leg. v′5 is obtained using the same procedure as for point v1.

Once we have constructed all variable patterns, we need to construct the
literal patterns as shown in Fig. 7. In a similar method as used for the left leg
of the variable pattern, we move point l5 upwards. d′ is a constant. This opera-
tion can be performed in such a manner that the extended spike-cone remains
unchanged (or only “shrinks” in size) and that the spike-cone only changes in
a way, which results in a smaller opening of the spike in the variable pattern.
Finally, we construct the clause junctions as shown in Fig. 8. The clause junctions
are constructed such that no spike-cone intersects with the polygon boundary.
Distance b is defined to be the minimum of the y-distance of the point with
maximum y-value among all points, where two extended spike-cones intersect,
from the horizontal line of the literal patterns, and the distance w′ (see Fig. 5).
We complete the construction as indicated in Fig. 3; points w1, w6 and p8 of the
leftmost clause junction are in a straight line.

An analysis reveals that the coordinates of all points can be computed in
polynomial time; some coordinates require a polynomial number of bits. (A
similar analysis can be found in full detail in [5].) Therefore, the construction is
polynomial in the size of the input.

3 Transformation of the Solution

We describe how to obtain an assignment of the variables of the satisfiability
instance, given a feasible solution of the corresponding PG instance.
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Fig. 8. Construction of the clause junctions

– Determine which guard is inside the polygon w1, · · · , w6 (see Fig. 3) and
move this guard to w1.

– For each literal pattern, determine which guard sees point l4 (and is inside
the literal pattern) and move it to the closer one of the two points l1(= T )
or l5(= F ) of the literal pattern. If there is a guard at both points l1(= T )
and l5(= F ) of the literal pattern, move the guard at l5(= F ) along the
spike-cone to the point v1 or v5 of the corresponding variable pattern. If
there is more than one guard at point l1(= T ) or l5(= F ), move all but one
guard along the spike-cone to the variable pattern.

– For each clause junction, move any guard that sees point p6 of the junction
to the closest point T of any literal pattern in the clause junction.

– For each variable pattern, move the guard that sees point v9 of the variable
pattern to the closest of the two points v1 and v5 of the variable pattern. If
there are additional guards in the area of the variable pattern, move them
to v1 or v5 depending upon which leg of the variable pattern they are in.

– Move all guards that lie in an extended spike-cone, but not at point l1 or l5
of a literal pattern to point v1 or v5 of the corresponding variable pattern.
If a guard lies in an intersection of two extended spike-cones that belong
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to different legs (of variable patterns), add a guard and move these guards
to the corresponding points v1 or v5 in the variable patterns. Intersections
of three extended spike-cones that belong to three different legs of variable
patterns do not exist.

– Guards at other points can be moved to any point v1 or v5 of any variable
pattern, if there is no guard at v1 or v5 already. Guards in intersections of
two spike-cones of the same variable pattern are moved to point v1 or v5 of
the variable pattern, if there is no guard there already.

The solution obtained by moving and adding guards as indicated is still feasible,
i.e., the guards still see all of the polygon.

We are now ready to set the truth values of the variables. For each variable
pattern xj , if there is a guard at point v5 and no guard at point v1, let xj be
false. If there is a guard at point v1 and no guard at point v5, let xj be true. If
there is a guard at both v1 and v5, then set xj in such a way that a majority of
the literals of xj become true.

4 Analysis of the Reduction

Consider the promise problem of 5-Occurrence-3-Sat, where we are given
an instance of 5-Occurrence-3-Sat, and we are promised that the instance
is either satisfiable or at most m(1 − 4ε) clauses are satisfiable by any assign-
ment of the variables. The NP -hardness of this problem for small enough values
of ε follows from the fact that 5-Occurrence-3-Sat is MAXSNP -complete
(see [12] and [2]). An analysis of our reduction leads to the following.

Theorem 1. Let I be an instance of the promise problem of 5-Occurrence-

3-Sat, let n be the number of variables in I and let m ≤ 5
3n be the number of

clauses in I. Let OPT (I) denote the maximum number of satisfiable clauses (for
any assignment). Furthermore, let I ′ be the corresponding instance of PG and
let OPT (I ′) denote the minimum number of guards needed to completely see the
polygon of I ′. Then, the following hold:

– If OPT (I) = m, then OPT (I ′) ≤ 3m + n + 1.
– If OPT (I) ≤ m(1 − 4ε), then OPT (I ′) ≥ 3m + n + 1 + εm.

Theorem 1 shows that our reduction is gap-preserving (see [2]). It shows that
the promise problem of PG with parameters 3m + n + 1 and 3m + n + 1 + εm
is NP -hard. Note that m ≥ n

3 , since each variable appears as a literal at least
once. Therefore, unless NP = P , no polynomial time approximation algorithm
for PG can achieve an approximation ratio of:

3m + n + 1 + εm

3m + n + 1
= 1 +

ε

3 + n+1
m

≥ 1 +
ε

3 + 3(n+1)
n

≥ 1 +
ε

7

Thus, we have our main result:
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Theorem 2. The Point Guard problem for polygons without holes is APX-
hard.

Note that our proof works as well for the PG problem as defined in [8],
where it is required that the guards see all of the interior and the boundary of
the polygon.

5 Discussion

With similar arguments, we can show that the Vertex Guard and Edge

Guard problems for polygon without holes are APX-hard as well. This charac-
terization of the approximability of Vertex Guard, Point Guard and Edge

Guard for polygons without holes is not the end of the story. We know of no
approximation algorithm that achieves a constant ratio. We, therefore, did not
focus on giving a concrete value for the inapproximability ratio. As long as no
constant ratio approximation algorithms are known, it suffices to show that these
problems are APX-hard. The approximation algorithms in [7] only achieve ratios
of O(log n) for VG and EG.
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